Cosmic Acceleration and Fundamental Physics

Andreas Albrecht (UC Davis)

Presented at the SNAP DOE review

Friday Jan 26 2001

Outline

1) The accelerating Universe

2) The Impact of a SNAPclass dataset

1) The accelerating Universe

Deep implications for fundamental physics:

- Dream: Magical symmetry sets Λ
 ≡ 0
- Fundamental nature of matter (string/M etc.)

Entropy (i.e. Banks)
Structure of String/M

IF IT IS THE CASE THAT IN STRING THEORY TOGET 1 >0 BUT EXTREMELY SMALL IS IMPOSSIBLE, I FOR OUT WON'T BE TOO UPSET BECAUSE I FIND SUCH A UNIVERSE UN PLEASANT TO CONTEMPLATE. ASSUMING RECENT EXPERIMENTAL SWOWES HOLD UP, I'D HOPE FOR A DIFFERENT WHERPRETATION OF THEM THERE MIGHT BE SOME MORE RADIAL PISSIBILITIES, BUT TWO CONSERVATIVE OPTIONS COME T MIND AT ONCE:

Ed Witten: Quantum gravity in

<u>deSitter space</u>

- Current status: Quintessence/Dark energy ideas give a rich phenomenological landscape:
 - •Different versions of cosmological evolution/a variety of observable signatures.
 - Growing links with fundamental physics.
- Great prospects for progress

2) The Impact of a SNAPclass dataset

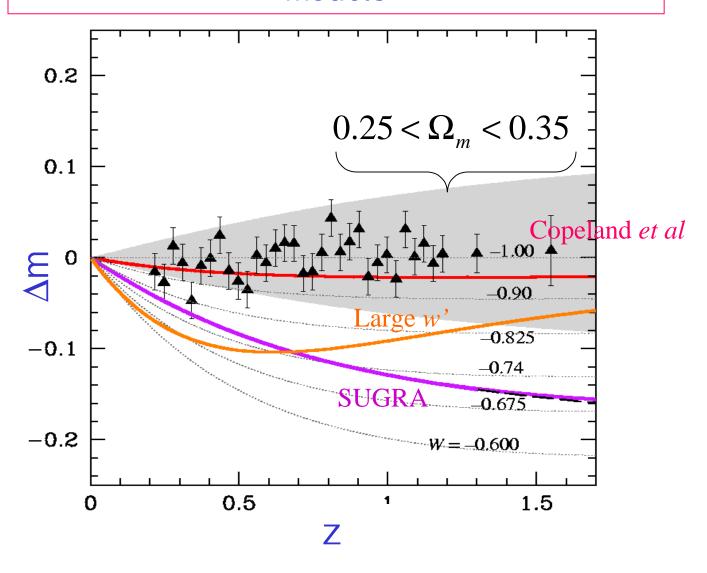
Basic points:

Measure cosmology via m(z)

$$m(z) = M + 5 \log D_L$$

$$D_L = H_0 d_L = H_0 (1+z) \int_0^z \frac{c}{H(z')} dz'$$

Huge space of models →
 Parameterize dark energy. We use

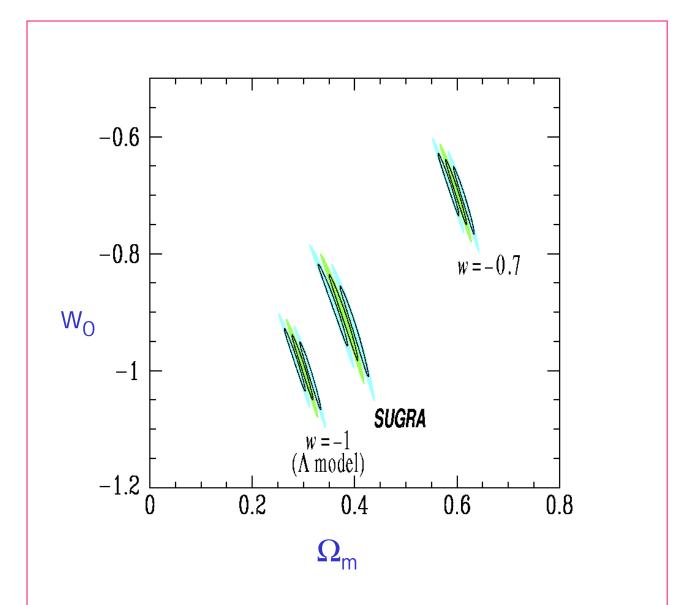

$$p_Q = w \rho_Q$$

$$w(z) = w_0 + w'z + \dots$$

Gives good physical intuition + best fit to existing models.

AA & Weler, Huterer and Turner, Maor et al

Magnitude residuals (vs a Λ =0.7 model) for simulated SNAP data and theoretical models



$$p_Q = w \rho_Q$$

$$w = -1 \Longrightarrow \Lambda$$
deSitter space

 $w(z) = w_0 + w'z$ Large w': = (-0.6) + (-0.8)z

Weller & AA (2000)

Snap uncertainties in w_0 - Ω_m space

Conclusions

Cosmic acceleration: The most exciting subject in all of physics(!):

- Deep implications (physics)
- Opportunities for real progress (astronomy)
- Impact of new data driven by fundamental physics. Not just a few new parameters to fit.